**Question**

`What is the value of (1-1/3) (1-1/4) (1-1/5) (1-1/6) … (1-1/n)?`

`What is the value of (1-1/3) (1-1/4) (1-1/5) (1-1/6) … (1-1/n)?`

A. 2

B. n

C. 2/n

D. 2n

**Answer: C. 2/n**

**Solution:**

Given series is

**(1-1/3) (1-1/4) (1-1/5) (1-1/6) … (1-1/n)**

= 2/3 × 3/4 × 4/5 × 5/6 × ⋯ × (n−2)/(n−1) × (n−1) / n

=2/n

Hence, the series

**(1-1/3) (1-1/4) (1-1/5) (1-1/6) … (1-1/n) = 2/n .**